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Abstract. Starting from sparse views of real-captured scenes and a syn-
thetic dataset of 3D vehicles, we aim to synthesize photo-realistic street
views with moving vehicles, editable illumination, and controllable view-
points which is a significant task for autonomous driving simulation. The
problem is very challenging as only sparse views are available for recov-
ering such a complex street environment. In this paper, we propose a
full radiance field scheme for free-view synthesis of street scenes and ve-
hicles. Benefiting from the scheme that both the scene and the vehicle
are represented as radiance fields, illumination can be directly extracted
from the real-captured scenes and transferred to the synthesized vehicle.
The ambient illumination is modeled as a mixture of Spherical Gaus-
sians(SGs) with different frequencies, which turns out to be effective in
recovering the low-frequency sky illumination and high-frequency sun il-
lumination. Experiments show that our model can synthesize street view
and vehicle images in free views, and significantly outperforms previous
works in photo-realism and lighting modeling accuracy.
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Fig. 1. We take sparse videos of real-captured street scenes as well as synthetic vehicles
as input. Full neural radiance fields of both geometric and photometric properties such
as lighting, materials are optimized for both the background scenes and synthetic vehi-
cles to support flexible street scene simulation, such as free-view rendering, relighting,
vehicle composition and manipulation in 3D.



2 S. Zhu et al.

1 Introduction

Humans can envision unseen scenarios in their minds, significantly enhancing
the effectiveness of learning. Drawing inspiration from this capacity, researchers
in the field of autonomous driving have focused on creating virtual environ-
ments with synthesized vehicles to train perception models. Extensive studies
demonstrate that this approach is crucial in addressing challenges related to 3D
visual-based decision-making problems [21,36].

The traditional 3D simulation involves the utilization of Computer-Aided De-
sign (CAD) models. Nevertheless, generating extensive and varied street scenes
with purely CAD models proves highly inefficient and costly in practical terms.
On the other hand, there are extensive street view datasets of real-captured
scenes, which contain extremely diverse street scenes under real-world lighting
information. Thus, in this paper, we propose a hybrid solution that models the
street scenes with real-captured sparse videos and composites of synthetic 3D
vehicles to synthesize photo-realistic free-view rendering in diverse scenarios.

Pioneering works try to synthesize street views by modeling vehicles as 3D
objects and representing the background scenes as static images [5,20,32]. These
methods exhibit limited control over the overall appearance of both scenes and
vehicles, and the viewpoint remains fixed. Now benefiting from the emergence
of neural radiance field (NeRF) [24] for a 3D scene representation, we can model
background scenes and integrated vehicles separately and then composite them
into a single radiance field to produce high rendering quality in free-view. Some
recent works [2,33,35] exploited NeRF representation for street scene rendering
and proposed to reconstruct scene geometry and recover intrinsic properties of
the scene for relighting purpose. Nevertheless, the rendering quality is signifi-
cantly constrained by the simplified lighting and material modeling employed to
depict intricate street scenes.

As shown in Fig. 1, in this paper, we propose a full neural radiation field
solution to build a street scene simulator, which supports free-view rendering,
3D vehicle composition, and relighting. The key idea is that by modeling both
real-captured street view scenes and virtual vehicles as neural radiance fields we
can integrate them in 3D space by considering both geometric constraints and
the illumination effects.

First, to attain photo-realistic rendering and relighting of integrated back-
ground scenes and virtual vehicles, we put lots of effort into decomposing the
intrinsic scene properties. Basically, we propose a novel scheme to effectively
decompose the environmental lighting while optimizing the NeRF for captured
street scenes. Specifically, we model the ambient illumination as a mixture of SGs
with different frequencies, which turns out to be effective in recovering the low-
frequency sky illumination and high-frequency sun illumination in a real-world
environment. Second, for the virtual vehicles, we build up a neural radiance field
library with their decomposed intrinsic properties as well. By leveraging the ra-
diance fields of both background scenes and virtual vehicles, along with their
intrinsic properties, we can execute scene composition in accordance with spa-
tially varying rendering equations. Finally, a FusionNet is introduced to further
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eliminate the synthetic-to-real gap after the composition of the inserted vehicles
and the street scene, producing photo-realistic renderings.

Our contribution can be summarized as:

– To the best of our knowledge, our method is the first full radiance field
solution for street and vehicle free-view synthesis for autonomous driving
simulation, which supports free-view rendering of the scene and greatly ex-
pands the simulation scene.

– To achieve realistic relighting and composition, we propose a method to
decompose intrinsic properties of both street scenes and virtual vehicles while
optimizing NeRF.

– Inverse rendering and a generative refinement are introduced to eliminate the
bias between real-captured data and synthetic data, yielding photo-realistic
fusing images.

2 Related Work

We first introduce the previous works of simulation for autonomous driving, then
review the relighting and composition for synthesized objects, which are two key
modules in generating photo-realistic scenes.
Driving view simulation: Simulating driving views has been a key technique
in training an autonomous driving system and is catching wide attention. The
traditional simulator [7, 27] leverages manually designed 3D models to render
street scenes with moving vehicles. These renderings contain a synthetic-to-real
gap, and a limited amount of 3D models makes it very difficult to build large-
scale and diverse scenes. In the follow-up research, the performance boost of 2D
conditioned generation models [4,15,26,31] provides an alternative to synthesize
novel scenes with editable contents in 2D generated images [8,21]. These methods
struggle in simulating 3D-related properties like rotations, shadows, and occlu-
sions. Very recently, Neural Radiance Field (NeRF) [24] was introduced for its
high-quality rendering and free-view synthesis performance [1, 5, 34, 37]. These
works represent vehicles with a NeRF and then fuse the renderings into scene
images. Though 3D properties for vehicles are learned, the rendering views are
limited as the scenes are still in a 2D representation. More importantly, the vehi-
cles and scenes are represented in a radiance field and an image separately, so the
lighting conditions cannot be accurately estimated and transferred, leading to
a less realistic synthesis in complex and diverse lighting situations. In contrast,
our method is a full radiance field solution merging street scenes and vehicles,
going further in synthesizing relightable and free-view renderings.
Merging objects and scenes: Merging synthetic objects (vehicles) into re-
constructed outdoor street scenes is a valuable task and of great significance to
solving the long-tail scenario problem of autonomous driving. To obtain photo-
realistic fusion results, some works [9, 12–14, 19] start from the background en-
vironmental images, trying to collect information from an outdoor background
image to obtain the surrounding environmental lighting conditions, and repre-
sent the scene lighting as spherical harmonic coefficients or HDR maps of sun
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and sky. However, these methods cannot cover the impact of objects in the
scene on lighting and the effect changes that occur after foreground objects are
inserted. To solve this problem, some methods [29, 38] decompose lighting into
global and local parts for prediction respectively. However, due to the limitation
that the background is a 2D image, the predicted illumination cannot guarantee
the spatial consistency of the same scene.

After NeRF was proposed, some methods [22,28,33] used intrinsic decompo-
sition and inverse rendering images to optimize scene geometry while estimating
illumination to ensure spatial consistency. For example, NeRF-OSR [28] proposes
a method that combines spherical harmonic coefficient illumination and diffuse
reflection effects, but it cannot restore the high-frequency highlight effect. Based
on the characteristics of the natural environment, we choose SG mixtures to rep-
resent environmental lighting, use a series of regularization terms to constrain
and optimize the decomposition of the scene’s intrinsic attributes, and use an
inverse renderer to restore the color and shadow effects of foreground objects to
the greatest extent. In addition, we use FusionNet to further enhance the realism
after fusion, thereby proposing a complete solution to this problem.

3 Method

3.1 Overview

Fig. 2. Overall Pipeline. Our approach enables moving foreground objects to be
inserted into real-world scenes. First, two neural radiance fields are generated for street
scenes and vehicles separately, with the intrinsic properties decomposed. Then the two
fields are fused to synthesize a lighting-uniform street scene with vehicles inserted.

As shown in Fig. 2, our approach enables moving foreground objects to be
inserted into real-world scenes and is capable of generating a high-quality video
of the composition in novel views. For the background scene, we take as input
multiple frames of images extracted from a street scene video, the camera poses
can be obtained from the IMU/GPS information, denoted as {Ii, Ci}Ni=1, where
Ii ∈ RH∗W∗3 is an image, Ci ∈ SE(3) is its camera pose and N is the number
of images. A neural radiance field for a street scene is built to decompose the
intrinsic scene properties (Sec 3.2).
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We introduce a mixture of Spherical Gaussians(SGs) [30] with different fre-
quencies to model ambient illuminations, which is sufficient to cover the low-
frequency sky illumination and relatively high-frequency sun illumination in a
real-world environment. A Street Scene Renderer is leveraged to jointly opti-
mize the parameters of the neural field and lighting conditions in the inference
phase (Sec 3.3). During training, we model the sky and the scene separately
and design their respective loss functions. A set of regularization terms opti-
mizes this highly underdetermined problem (Sec 3.4). For foreground objects,
we take advantage of a virtual vehicle library and build a network to decompose
the intrinsic properties of these vehicles. The vehicle information can be queried
through the library, and the vehicle can be directly inserted into the street scene
with a modified rendering equation. FusionNet is used to handle inconsistent
color saturation and harsh boundaries and to eliminate the synthetic-to-real
gap (Sec 3.5). It is worth noting that our approach represents both foreground
objects and background scenes in a unified field with their intrinsic properties
decomposed, which enables the scene to be rendered in free views.

3.2 NeRF for Street Scenes

NeRF [24] represents a scene with a neural field F : (x,d) 7→ (σ, c) which maps
3D location x and view direction d to corresponding density σ ∈ R and color
c ∈ R3. To model a large-scale street scene, hash-based NeRF representation
[25] is leveraged to improve the efficiency of training and inference.
Intrinsic property decomposition: A neural intrinsic field Fϕ : x 7→ (σ,n,k)
is learned to decompose the intrinsic properties related to spatial location. Specif-
ically, we encode input 3D location x with a hash table, then use three separated
modules to decode the hash feature: the geometry module σ = Fgeo(x; θg) out-
puts the density σ ∈ R; the normal module n = Fnorm(x; θn) outputs the surface
normal n ∈ R3; and the appearance module k = (kd,ks) = Fapp(x; θa) outputs
the material properties of the surface point.
Virtual vehicle library: To enhance the diversity of our model’s synthetic
scenes, we have collected a series of virtual vehicle models and established a Vir-
tual Vehicle Library to complement our street scene field. This enables the syn-
thesis of various foreground vehicles, enhancing the diversity of the scenes. Each
vehicle is represented as an implicit representation with triplanes and a small
MLP decoder. we obtain the intrinsic decomposition of the vehicles, maintaining
consistency with the scene, yielding a vehicle module (σv,kv) = Fv(x; θv). This
allows for direct integration of the vehicles into the scene at intrinsic level.

3.3 Street Scene Renderer

The rendering equation: The rendering equation [17] describes how light
propagates in a 3D scene and determines the irradiance observed at a particular
point. It provides a common formulation for rendering in computer graphics:

Lo(p,wo) =

∫
Ω

fr(p;wi,wo)Li(p,wi)(wi · n)dwi (1)
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Following the rendering equation, given a camera ray r(t) = o+ td, we first
compute the location of p by the volume render depth D̂ as p = o + D̂d, then
use an inverse render workflow to synthesize photorealistic street scenes.
Lighting representation: As the rendering equation is an integral equation
without an analytical solution, existing methods either simplify the ambient
lighting [22,28] or calculate it through expensive Monte Carlo integration [10,33],
which reduces the fidelity and efficiency of rendering.

To address the problem, We represent the ambient lighting as a sum of spher-
ical Gaussian lobes (SGs) [30]:

Li(ωi) =

M∑
k=1

G(ωi;ϕ, λ,µ) (2)

where ϕ ∈ R3 is the direction, λ ∈ R+ is the sharpness and µ ∈ R3
+ is

the amplitude, for a particular SG lobe. We regard the SGs as a part of model
parameters and jointly optimize them during the training stage.
Metal/roughness workflow: Street scenes encompass a wide variety of ob-
jects, each with distinct materials. In such scenes, many objects, such as bricks,
roads, and plants, typically have a high roughness, resulting in diffuse reflection
effects. However, for vehicles, the car paint often exhibits metallic properties and
characteristics like lacquer, which cannot be accurately simulated by consider-
ing roughness alone. Therefore, to precisely decompose and render the intrinsic
properties of street scenes, we introduce the metal/roughness workflow to model
the materials in street scenes.

In our workflow, the material properties kd and ks control the diffuse ap-
pearance and the specular appearance respectively. kd ∈ R3 represents the base
color of the object’s surface. In our workflow, ks is composed of roughness α and
metalness m from the material properties.

Based on the aforementioned material properties, we define the BRDF in
the Metal/roughness workflow as the sum of the diffuse component and the
specular component: fr = fd + fs. The diffuse part is determined by the base
color kd and the metalness m:fd = kd

π ∗ (1 − m). The metalness here is used
to control the intensity of the diffuse reflection. The specular component of
BRDF consists of normal distribution function, Fresnel term and shadowing
term. Metalness m serves here to align the color of the specular highlights with
the base color, thereby enhancing the metallic sensation. Similar to [41], We
represent the specular component of BRDF as a single SG, where h is exactly
halfway between the light direction vector and the view direction vector. :

fs = G(h;n,
1

2α2(h · ωo)
,
M
πα2

) (3)

As both lighting and BRDF are represented by SGs, we can first calculate the
lighting and BRDF, then obtain the emitted irradiance Crender by closed-form
hemispherical integration of the SGs [23].
Shadow map: Owing to the intricate nature of street scenes, the presence of
various objects obstructs light, leading to the formation of shadows throughout
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the scene. We compute a shadow map by uniformly sampling Nl incident rays
on the upper hemisphere, the visibility V of an incident ray with direction lk at
surface point p can be denoted as the volume opacity of the ray: r(t) = p+ tlk.
The ray is traced through the scene to obtain the visibility by volume rendering:

V = exp(−
∑
i

σi(ti − ti−1)), (4)

Then, we generate the shadow using a ratio between the occluded and unoc-
cluded irradiance.

S(p) =

∑Nl

k=1 fr(p;ωo, lk)Li(p; lk)V (p; lk)(lk · n)∑Nl

k=1 fr(p;ωo, lk)Li(p; lk)(lk · n)
(5)

A shadow map can be added to the scene by a pixel-wise product: L′
o = S

⊙
Lo

3.4 Optimization and Regularization

The sparse training image perspective and unknown lighting conditions make
the scene reconstruction an extremely ill-posed problem. Therefore, several data
augmentation and regularization terms are leveraged to constrain the problem.
Rendering loss: We use the consistency between the predicted color and ground-
truth color from input images as our main supervision, which is formulated as:

Lrender =
∑
r∈R

|Cgt − Crender|2 (6)

where Crender is the RGB value calculated by the rendering pass of each cam-
era ray r ∈ R, and Cgt is the corresponding ground-truth color. An end-to-end
training scheme is achieved with attribute decomposition and lighting parame-
ters jointly optimized.
Sky mask loss: We use a binary cross-entropy loss term between the volume
rendered alpha channel mask Mα and sky mask Mtextgt, which is obtained
from an off-the-shelf semantic segmentation network [16]. The sky mask loss
term Lskymask is formulated as:

Lskymask =
∑
r∈R

BCE(Mα,Mgt) (7)

Sky modeling loss: Because performing physically-based rendering on the pix-
els of the sky is meaningless, we used an off-the-shelf semantic segmentation net-
work [16] to mask out the sky pixels. We first use a binary cross-entropy to find
sky pixels, then the sky network can give the corresponding sky color according
to the viewing direction. An MSE loss is used to evaluate the difference between
the predicted sky color and the ground-truth sky color, formulated as:

Lsky =
∑
r∈sky

|Cgt − Csky|2 (8)
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Normal loss: Normal extracted from the density field n̂ = − ∇σ(x)
|∇σ(x)| is used

as a supervisory term for normal predicted from MLP. Additionally, we use an
off-the-shelf normal estimator [18] to provide a reference normal nr, as in:

Lnorm. =
∑
r∈R

(|nr − n|2 + |n̂− n|2) (9)

Base color loss: We observed that without any constraints, the shadows in the
scene tend to be incorrectly merged into the base color. Noting that shadows
often appear on roads, we utilize a shadow detector [6] and a segmentation
network [16]. The pixels identified by the shadow detector as being in shadow,
and the road pixels, are combined to define the domain S where constraints
should be applied to the base color. Then we mask out the shadow pixels in the
image and calculate the average color of each semantic segment after removing
shadows to serve as the reference color Cref.. We encourage the base color to be
consistent with the pixels without shadow, which is formulated as:

Lbase. =
∑
r∈S

|Cref. − Cbase.|2 (10)

Combining all supervision and regularization items, our overall loss func-
tion is denoted as:

L =Lrender + λskymaskLskymask

+ λskyLsky + λnorm.Lnorm. + λbase.Lbase.
(11)

In our experiments, we set λrad. = λsky = 1, λskymask = λnorm. = λbase. = 0.1,
λsmooth = 0.01. λdepth is set to 0.1 on nuScenes [3] dataset.

3.5 Street Scene Fusion

Fig. 3. We employ a hybrid sampling approach to facilitate the fusion of vehicles with
street scenes. Initially, vehicles and street scenes are sampled independently, followed
by sorting and combining them according to depth in the real-world coordinate.
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Fig. 4. Qualitative results of relighting on NeRF-OSR dataset [28]. Our method re-
constructs normals with less noise and restores realistic shadows, enabling high-quality
relighting results under various lighting conditions.

Intrinsic properties merging: As shown in Fig. 3, a hybrid sampling method
is used to integrate vehicles and street scenes together. Beyond the original sam-
pling points within the scene, we introduce an additional set of sampling points
in the real-world coordinate. These additional points are specifically designated
for the sampling of vehicles.

After the vehicle and the scene are both sampled, we sort and combine the
sampling points based on their depth in the real-world coordinate, resulting in
the combined sampling points {X}. Then, let r = o+ td denote the camera ray
with origin o and direction d, we obtain color and intrinsic properties of the
vehicle and scene fusion by performing standard volume rendering:

c(r) =
∑
Xi

Tiαici, Ti = exp(−
i−1∑
k=1

σkδk) (12)

n(r) =
∑
Xi

Tiαini, k(r) =
∑
Xi

Tiαiki (13)

where αi = 1 − exp(−σiδi), δi = ti+1 − ti. Similar to [34], we truncate the
density of scene sampling points within the vehicle’s bounding box to prevent
confusion between the scene and the vehicle. We can extract the mask of the
foreground vehicle by comparing the depth of the vehicle and the scene, serving
as the input for our FusionNet.
Fusion network: Our Street Scene Renderer has achieved a photo-realistic com-
position of the appearance and shadow of foreground vehicles and street scenes.
However, there are still some differences between the virtual vehicle models and
the real vehicles, such as dust on the car body and fading of the car paint, etc.
Therefore, we propose FusionNet to further eliminate the differences between
virtual and real. We segmented vehicles from the street scene dataset and dis-
turbed the clarity and color saturation of the vehicles to simulate the differences
between virtual and real. We used a network structure similar to [39], with the
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Fig. 5. Qualitative comparison of intrinsic properties decomposition. Our method re-
constructs the true base color without any residual shadows. Furthermore, we achieve
smoother normals and consistent materials, enhancing rendering quality.

Fig. 6. Qualitative comparison of foreground vehicle fusion. Our method harmoniously
blends vehicles with street scenes, accurately restoring details such as highlights and
shadows on the vehicles.

addition of a vehicle segmentation mask as input, and an extra supervision item
for color to ensure that the appearance of vehicles stays unchanged.

4 Experiments

4.1 Datasets and Baselines

NuScenes dataset: NuScenes dataset [3] provides comprehensive resources for
autonomous driving research. To simulate an urban environment, we select data
from two distinct scenes from nuScenes dataset. Each scene’s data encapsulates
a video recorded by six strategically placed cameras on a moving vehicle. In our
experiments, we used images from all six viewpoints.
NeRF-OSR dataset: NeRF-OSR [28] dataset contains eight sites captured
from 3240 viewpoints using a DSLR camera across 110 different recording ses-



StreetSyn 11

Fig. 7. Fusion results when removing or replacing a certain module of our proposed
fusion process for ablation study.

Scene 1 Scene 2

Method PSNR↑ MSE↓ PSNR↑ MSE↓

NeRF-OSR [28] 15.86 0.026 15.97 0.025
Ours (w/o norm. reg.) 17.12 0.019 17.83 0.016
Ours (w/o shadow) 17.73 0.017 18.12 0.015

Ours 17.95 0.016 18.56 0.014
Table 1. Quantitative Evaluation on NeRF-OSR [28] dataset

sions. For each site, a 360-degree shot of the environment map was also taken.
Images from each site are divided into a training set and a test set with ground-
truth illumination maps. We applied our Neural Street Field model to two scenes
from NeRF-OSR dataset, and obtained quantitative evaluation results.
Baseline methods: We use different baselines for different tasks for comparison.
We establish Neural Street Field on NeRF-OSR dataset, and make qualitative
and quantitative comparisons in terms of the quality of rendering and relight-
ing. To decomposite intrinsic properties of scenes, we compare our method with
RelightNet [40] and Nvdiffrecmc [11]. Lastly, we compare the methods of 2D
illumination estimation, examining the effects of using generative network tech-
niques in the integration of foreground vehicles and street scenes.

4.2 Rendering and Relighting Quality

Outdoor relighting quality: As shown in Fig. 4, We select two scenes from
NeRF-OSR dataset and build the Neural Street Field model to conduct re-
lighting evaluations for outdoor scenes. Our quantitative evaluation results are
reported in Tab. 1. Our method outperforms previous methods in PSNR and
MSE by a large margin, recovering more accurate albedo, normal, and shadow
effects. We also evaluate the relighting effect on two environment maps out of
the dataset. The spherical harmonics based lighting representation of NeRF-OSR
cannot fully capture the global lighting condition, and its bumpy normal also
causes poor relighting effects under bright lighting conditions. We comprehen-
sively improve the reconstruction quality of various intrinsic properties, thereby
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achieving much better relighting effects than NeRF-OSR. The additional abla-
tion study is conducted by: (a) Without normal regularization: We do not use
additional normal regularization terms (b) Without shadow: The shadow map is
removed, which means all surface points can be illuminated by the light source.
Intrinsic decomposition quality: Autonomous driving datasets commonly
provide multi-view videos in a center-outward manner, resulting in very sparse
viewing angles of the scene. Such images acquire limited 3D geometric informa-
tion about the scene. Additionally, the images in the dataset commonly suffer
from motion blur and inconsistent brightness, which poses significant challenges
to accurately decomposing the intrinsic properties of the scene. As shown in
Fig. 5, We compare the quality of intrinsic decomposition with RelightNet [40]
and Nvdiffrecmc [11] RelightNet is unable to decompose material information
and shows significant errors in estimating base color and normal. Nvdiffrecmc
fails to reconstruct correct geometry and appearance from sparse observation
angles. Compared with these two methods, our method achieves high-quality
intrinsic decomposition that can be directly used for render passes, producing
high-quality relighting results.

4.3 Vehicle Fusion Quality

Qualitative comparison: As shown in Fig. 6, we compare the fusion effect of
our method with other methods. Hold-Geoffroy [12] first proposed a method for
estimating sky illumination, but they ignored the occlusion caused by objects in
the scene, leading to over bright appearance and incorrect shadows. Tang [29]
considered both global and local lighting, which led to a more realistic appear-
ance. However, due to the lack of 3D constraints, their results lacked consistency
and were unable to bridge the gap between synthetic objects and real-world ob-
jects. Chen [5] tried using a generative network to modify the appearance of
vehicles, but they could not restore details such as highlights and shadows. By
contrast, our method synthesizes accurate highlights and shadow effects, leading
to photo-realistic insertion of vehicles into the scene.

4.4 Ablation Study

To validate the effectiveness of the introduction of shadow map, Metal/roughness
workflow and FusionNet, we conduct the experiments with the following settings:
• (a) Without occulusion: The shadow map is removed. All surface points are
considered visible to the light source.
• (b) Without fs: The specular component fs of the BRDF is removed, retaining
only the diffuse appearance.
• (c) Without metallic: The metalness of the vehicle is set to 0, modeling the
vehicle as a completely non-metallic object.
• (d) Without specular: The metalness in specular component of fs is set to 0,
and the specular color turns white.
• (e) Without FusionNet: The FusionNet is removed from the fusion process.
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• (f) Ours Full: Our method fuses a vehicle into a street scene.
The visualized results of the ablation study are shown in Fig. 7. We find that

our full method achieves a photorealistic composition of the foreground vehi-
cle and the street scene. Comparing (a) with (f), we can see that there are no
shadow effects on the ground near the vehicle, and abnormal bright spots ap-
pear on the body of the car. This demonstrates the necessity of considering the
shadows generated by objects within the scene and by the vehicle itself. Com-
paring (b) with (f), we find that the vehicle becomes a completely Lambertian
surface, without any specular effects, failing to reflect the true appearance of the
vehicle’s material. This proves the advantages of the Metal/roughness workflow.
Comparing (c) with (f), the appearance of the vehicle shifts towards white, this
demonstrates the superiority of incorporating metalness into out Street Scene
Renderer. Comparing (d) with (f), metalness makes the highlight display the
correct color. Comparing (e) with (f), in the physically-based rendering results
on virtual vehicles, there are issues of color inconsistency and over-saturation.
FusionNet can eliminate the gap between virtual and real, yielding indistinguish-
ably photorealistic results.

5 Conclusion

In this paper, we propose to synthesize photo-realistic street views with moving
vehicles, editable illumination, and controllable viewpoints from sparse views
of real-captured scenes and a synthetic dataset of 3D vehicles. A full radiance
filed scheme is introduced for free-view synthesis of street scenes and vehicles,
where illumination can be directly extracted from the real-captured scenes and
transferred to the synthesized vehicle. Experiments show that our model can
synthesize street view and vehicle images in free views, and significantly outper-
forms previous works in photo-realism and lighting modeling accuracy.
Limitations: Although our method achieves high-quality rendering of street
scenes and fusion with foreground vehicles, it still has certain limitations. Our
method remains reliant on some 2D priors, and additionally, we have not ac-
counted for the effects of multiple light bounces. In our future work, we aim to
extract more information from existing data to reduce our dependence on 2D
priors. We plan to employ more sophisticated rendering techniques to minimize
energy loss during the rendering process.
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