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Fig. 1. We present a novel approach for 3D human pose estimation from sketches. Benefiting from the large-scale SKEP-120K dataset (left), we propose to
learn a data-driven sketch-to-pose model that exhibits improved generalization ability and efficient inference (right).

3D human pose estimation from sketches has broad applications in computer
animation and film production. Unlike traditional human pose estimation,
this task presents unique challenges due to the abstract and disproportionate
nature of sketches. Previous sketch-to-pose methods, constrained by the lack
of large-scale sketch-3D pose annotations, primarily relied on optimization
with heuristic rules—an approach that is both time-consuming and limited in
generalizability. To address these challenges, we propose a novel approach
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leveraging a "learn from synthesis" strategy. Firstly, a diffusion model is
learned to synthesize sketch images from 2D poses projected from 3D hu-
man poses, mimicking disproportionate human structures in sketches. This
process enables the creation of a synthetic dataset, SKEP-120K , consisting of
120k accurate sketch-3D pose annotation pairs across various sketch styles.
Building on this synthetic dataset, we introduce an end-to-end data-driven
framework for estimating human poses and shapes from diverse sketch
styles. Our framework combines existing 2D pose detectors and generative
diffusion priors for sketch feature extraction with a feed-forward neural net-
work for efficient 2D pose estimation. Multiple heuristic loss functions have
been incorporated to guarantee geometric coherence between the derived
3D poses and the detected 2D poses while preserving accurate self-contacts.
Qualitative, quantitative, and subjective evaluations collectively affirm that
our proposed model substantially surpasses previous ones in both estimation
accuracy and speed for sketch-to-pose tasks.
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1 Introduction

Human pose estimation holds significant importance and finds wide-
spread application across numerous scenarios, including 3D human
reconstruction [Tan et al. 2020; Zhu et al. 2016], 3D human genera-
tion [Wang et al. 2025; Zeng et al. 2023; Zhuang et al. 2025], view
synthesis [Zhu et al. 2018], and animation [Liao et al. 2020; Zhu
et al. 2024a]. Among the various sources used for pose estimation,
sketches emerge as an efficient and versatile entity. Sketches are
data that can be more easily designed by artists and are widely used
in animation and film production. More broadly, the term ‘sketch’
encompasses a diverse range of graphical styles, including charcoal
sketches, cartoons, stick figures, kids” drawings, oil paintings, ink
paintings, and so forth.

Estimating human poses from sketches presents a significant
challenge. Generalized photo-based pose estimation methods fall
short in this task due to their exclusive training on realistic data.
By contrast, sketches often disregard human proportionality and
geometric perspective, opting for a more abstract representation of
poses, thereby exacerbating the complexity of the sketch-to-pose
conversion. To tackle this, Brodt et alintroduced Sketch2Pose [Brodt
and Bessmeltsev 2022], which initializes by predicting 2D joint posi-
tions from sketches and subsequently aligns a 3D parametric human
model to their bones via an optimization framework. Nonetheless,
this method is slow and mostly tailored towards hand-drawn sketch
lines. Pursuing a swift and highly generalized solution for the sketch-
to-pose task remains an open problem.

To tackle this problem, we embraced a "learn from synthesis" strat-
egy, which has been successfully applied in avatar modeling [Guo
et al. 2023; Zhuang et al. 2024] and street view synthesis [Zhu et al.
2024c]. Starting from a modest quantity of sketches and correspond-
ing 2D human pose datasets, a large-scale sketch-3D pose dataset
is synthesized by a fine-tuned image generative model conditioned
on human poses. Such data synthesis is tailored for the sketch-to-
pose task. Specifically, we incorporated pose perturbations to create
data representing disproportionate human figures and misaligned
perspectives in sketches. Furthermore, we amassed a substantial col-
lection of sketches encompassing diverse styles, conducted detailed
categorical analyses, and thereby enriched the stylistic variety of
the sketches we generated. Ultimately, we produced 120, 000 such
high-quality sketch-pose data pairs.

Based on such a dataset, we introduce an end-to-end framework
for estimating human mesh from various styled sketches. The gen-
erative diffusion prior is leveraged to extract human pose features in
sketches and inject conditions that fit the drawing features to guide
the denoising network. Unlike the iterative optimization strategy
utilized by Sketch2Pose, we implement a neural network featur-
ing a feed-forward architecture for almost 500 times faster pose
estimation. A feature-extracting strategy tailored for sketches is
introduced to boost the accuracy of 3D pose regression. Owing to
our extensive dataset encompassing a wide range of styles and a
meticulously designed loss function, our method achieves compa-
rable pose estimation accuracy to Sketch2Pose, while significantly
surpassing it in terms of speed and generalization capabilities.
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The contributions of our work can be summarized as follows:

o Using a learning-by-synthesizing strategy, we propose a novel
approach to address the sketch-to-pose problem. This strategy
involves synthesizing a large-scale, customized sketch-3D
pose dataset, which substantially boosts the generalization
capabilities of the sketch-to-pose estimator across diverse
sketch styles.

By developing a feed-forward structured network, we have

significantly improved the speed of sketch-to-pose estimation,

marking the 500 times faster than the prior SOTA sketch-to-
pose estimator.

e Our meticulously designed network architecture and loss
function have greatly enhanced the robustness of the predic-
tion model, allowing it to accurately predict poses even in the
presence of human proportion distortions and perspective
inaccuracies that commonly exist in sketches. As a result,
our method achieves state-of-the-art (SOTA) pose prediction
accuracy.

2 Related Works

Sketching is widely regarded as an easy and accessible way to pose
characters, catering to both professionals and non-artists. While
notable progress has been made in related fields, such as sketch-
based interfaces and image-based pose estimations, the unique chal-
lenges of handling abstract, disproportionate, and stylistically di-
verse sketches remain underexplored. This section reviews the most
relevant works, categorized into sketch-based character posing and
human pose estimation from a single photograph.

2.1 Sketch-Based Character Posing

Sketch-based character posing provides an intuitive means for users
to manipulate 3D human poses, yet it introduces several significant
challenges. Depth ambiguity, anatomical distortions, missing details,
and diverse sketching styles make pose inference particularly diffi-
cult. Early works focused on stick figures [Davis et al. 2003; Hecker
and Perlin 1992; Lin et al. 2010; Mao et al. 2005], silhouettes [Won
and Lee 2016], and clean vector drawings [Bessmeltsev et al. 2016].
These approaches, though efficient in constrained scenarios, are
hindered by their reliance on unambiguous, clean inputs. For in-
stance, Gesture3D [Bessmeltsev et al. 2016] reconstructs poses from
vector drawings but assumes minimal noise, precise connectivity,
and no extra strokes—requirements that are rarely met by natural,
user-drawn sketches. This reliance on specific input types signifi-
cantly limits the usability of such systems, as users cannot freely
use diverse sketching styles to specify desired poses.

Recent approaches like Sketch2Pose [Brodt and Bessmeltsev 2022]
use a neural network to predict bitmap representations and opti-
mize 3D model parameters for pose inference. However, due to the
scarcity of sketch-to-3D model pairs for training, the method re-
quires additional optimization to produce acceptable results. This
not only introduces a significant computational burden, but also
raises concerns about the reliability of the generated poses, which
may lack naturalness or anatomical correctness.

An important application in this domain is the development of
interactive systems for engaging with sketches. To achieve efficient
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inference, systems like MonsterMash [Dvoroziak et al. 2020] and
Motion Doodles [Thorne et al. 2004] offer fast, intuitive sketch-based
interactions but are limited by strict input formats or detailed anno-
tations. Systems designed for articulated human poses, like those by
Unlu et al.[Unlu et al. 2022] and Schmitz et al.[Schmitz et al. 2023],
impose further input constraints, requiring sketches to consist of 3D
primitives. Previous methods have imposed a trade-off between effi-
ciency and input diversity due to the lack of paired sketch-3D pose
datasets. In contrast, our approach addresses this gap by proposing
a large-scale dataset and building a pose estimation network that
directly predicts poses from sketches. This enables efficient near-
real-time performance while maintaining generalizability, offering
a simple, direct, and scalable solution for sketch-to-pose estimation.

2.2 Human Pose from a Single Photograph

Estimating 3D human poses from a monocular image has been exten-
sively studied in computer vision due to its significant applications
in computer graphics, animation, and human-computer interac-
tion. Early methods relied on handcrafted features [Andriluka et al.
2010; Balan et al. 2007; Ramanan 2011], using probabilistic models
and tree-based structures. However, they struggled with occlusions,
ambiguous poses, and appearance variations.

The introduction of deep learning shifted the field, with Deep-
Pose [Toshev and Szegedy 2014] being one of the first CNN-based
approaches. This was followed by methods like Tekin et al. [Tekin
et al. 2016], which integrated CNNs with structured prediction to
improve pose accuracy, and Martinez et al. [Martinez et al. 2017],
which proposed a fully connected network for 2D-to-3D lifting.
Zhou et al. [Zhou et al. 2017] added geometric constraints, while
Pavlakos et al. [Pavlakos et al. 2017] used volumetric heatmaps for
joint localization.

Despite progress, the need for large labeled datasets limited gen-
eralization, especially for non-photorealistic inputs. The introduc-
tion of parametric models like SMPL [Bogo et al. 2016] and SMPL-
X [Pavlakos et al. 2019] advanced pose and shape estimation with
3D human priors. Many methods [Goel et al. 2023; Li et al. 2021,
2022; Zhang et al. 2021] focus on improving the accuracy of human
mesh recovery. Weakly supervised approaches like HMR [Kanazawa
et al. 2018] regressed SMPL parameters using 2D keypoints and ad-
versarial losses, and HMD [Zhu et al. 2019, 2021] further refined
detailed shape based on the predicted SMPL mesh. Kolotouros et
al’s SPIN [Kolotouros et al. 2019] refined this approach with opti-
mization, while EFT [Joo et al. 2021] fine-tuned SMPL predictions.
Methods like 3DCrowdNet [Choi et al. 2022], JOTR [Li et al. 2023b],
and DPMesh [Zhu et al. 2024b] are designed to recover the occluded
body mesh. Self-supervised methods, such as Wang et al. [Wang et al.
2019] and Novotny et al. [Novotny et al. 2019], reduced dependence
on labeled data using geometric consistency.

Our method bridges human pose estimation and character draw-
ing by leveraging visual priors in pre-trained diffusion models, as
seen in VPD [Zhao et al. 2023]. Using our dataset, our fine-tuned
network extracts structural and spatial features from the denoising
U-Net for accurate human mesh recovery. By processing the input
image in a single inference pass [Zhu et al. 2024b], our approach
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adapts diffusion priors to handle abstract sketches, ensuring reliable
pose estimation.

3 SKEP-120K Dataset

It is widely recognized that the quality and abundance of the train-
ing data heavily influence the success of learning-based techniques
for human mesh recovery. Surprisingly, we find that there is cur-
rently a notable absence of a large-scale, high-quality dataset con-
taining sketches and 3D human poses. Though several available
datasets [Brodt and Bessmeltsev 2022; Ju et al. 2023; Madhu et al.
2022; Smith et al. 2023] offer a substantial number of sketches, they
provide only 2D pose labels and typically a single sketch style, mak-
ing them insufficient for training a highly accurate, generalizable
sketch-to-pose model.

Therefore, we propose a Sketch and 3D Pose dataset with 120k
data pairs in various sketch styles, named as SKEP-120K dataset. As
shown in Fig. 3, the dataset encompasses six styles according to ar-
tificial human scenes: cartoons, oil paintings, ink paintings, charcoal
sketches, stick figures, and kids’ drawings. Each style contains ap-
proximately 20,000 images. Our dataset provides human bounding
boxes, 16 human joints (both 2D and 3D, with corresponding visi-
ble/invisible/included attributes), SMPL pose parameters, and text
information. Due to the different definitions of the skeleton for a
human pose in different datasets and considering the characteristics
of gesture expression in the sketch, we define a new 3D skeleton
to represent the human pose. Specifically, the body parts are based
on MSCOCO database [Lin et al. 2014], and two additional joints
regarding left and right toes are added to reflect fine-scale leg poses.

The creation process of our dataset is shown in Fig. 2. Firstly,
we utilize VPoser [Pavlakos et al. 2019] to generate random SMPL
models exhibiting diverse and plausible poses, where a variational
autoencoder is designed to capture latent representations of human
poses. Given the pervasive foreshortening in sketches, which makes
the depicted human structure to deviate from the standard 3D-to-2D
projection observed in real-captured images, we introduce skeletal-
proportion perturbations during the 3D-to-2D mapping by adding
random biases to the projected limb lengths as a skeleton-level
data augmentation. This strategy yields skeletal configurations that
better capture the characteristic proportional exaggerations and
imbalances of hand-drawn sketches, thereby enhancing the pose
diversity and accuracy of the sketch dataset and producing 2D joint
annotations that are better aligned with sketch scenarios. Next, we
consolidate data from the Sketch2Pose [Brodt and Bessmeltsev 2022],
Human-Art [Ju et al. 2023], and Amateur Drawing datasets [Smith
et al. 2023], unify their 2D keypoint annotations to our defined set
of 16 joints, and partition them into six groups by drawing style.
We then leverage BLIP2 [Li et al. 2023a] to generate appearance
descriptions on sketch images and motion descriptions on SMPL
rendering images. These descriptions, together with the target style
labels, serve as conditioning prompts, yielding a sketch training set.
On this basis, we train a text-conditioned image generation model
following ControlNet [Zhang et al. 2023] to synthesize sketch data.
During training, sketches from all six styles and their associated
annotation parameters are jointly used to train the same model.
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Fig. 3. Data Description. SKEP-120K dataset comprises six sketch styles:
cartoons, oil paintings, ink paintings, charcoal sketches, stick figures, and
kids” drawings. The provided 2D/3D joints are shown on the left.

After that, we manually curate the model-generated dataset to
improve its quality further. Specifically, we invite experienced 3D
modelers to filter out approximately 10% of the sketches in each style,
including those with severely cluttered backgrounds that compro-
mise subject visibility, those showing pose inconsistencies caused
by overly challenging conditioning poses, and a subset with ex-
tremely distorted poses introduced by the added random biases. As
a result, we generate character images across various styles with
high accuracy and adherence to the 2D skeleton distribution. Given
the diverse line-based nature of sketches, we use the off-the-shelf
outline detector [Canny 1986] to extract line distributions within
these images. A threshold is applied to identify the smallest region
encompassing most lines, defining the character’s bounding box. We
compare the human bounding box with the bounding box generated
from the detector of Human-Art, leaving a more accurate result,
and manually filtering out the undetectable cases. We also detect
the occlusion of each joint based on the occlusion relationship of
the SMPL mesh, which is recorded as the label of each joint.
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4 Method

Given the SKEP-120K dataset, our objective is to train a prediction
model for recovering 3D human poses from sketches in varying
styles. As shown in Fig. 4, our overall network consists of three mod-
ules: (I) a 2D guidance extractor (Sec. 4.1); a sketch feature extractor
(Sec. 4.2); and an SMPL regressor (Sec. 4.3). From a probabilistic
model perspective, the above process can be formulated as:

Py (Y1x) = pg, (Y| F)pg, (F e(x), G)py, (Gle(x)), (1)

where x denotes the input sketch; y is the 3D pose represented by
SMPL parameters; ¥ signifies informative feature maps extracted
from sketches; G indicates the spatial guidance extracted from 2D
poses; € is a pre-trained image encoder network; py, , pg, and pg,
correspond to the 2D guidance extractor, sketch feature extractor,
and SMPL regressor, respectively. We will then explain each module
and the objective functions in the following sections.

4.1 2D Guidance Extractor

Drawing inspiration from VPD [Zhao et al. 2023], our core idea
involves extracting high-level pre-trained knowledge from a diffu-
sion model. A fundamental prerequisite for achieving this is the
extraction of 2D guidance.

The first step in extracting 2D guidance is to estimate 2D joints
from input sketches. Leveraging our proposed SKEP-120K dataset,
we have fine-tuned two state-of-the-art network models for hu-
man detection and 2D joint extraction from sketches. Specifically,
the input sketches are first resized and padded to the resolution
of 256 x 192 pixels to preserve the aspect ratio. Then, the hu-
man detector YOLOX [Redmon 2016] is fine-tuned by Human-Art
dataset for human’s bounding box detection in sketches, and the
ViTPose [Xu et al. 2022] model is fine-tuned for 2D joints prediction
from these bounded sketches. ViTPose utilizes a straightforward,
non-hierarchical vision transformer as the encoder to capture hu-
man features in drawings, combined with a lightweight decoder
that predicts body joints in a top-down approach. Finally, we obtain
2D joints J2P € RK*2 along with their corresponding confidence
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and transform them into heatmaps H jz_D
Gaussian kernels [Cheng et al. 2020].
After the 2D joints are obtained, pose features are extracted from
the 2D joints J?P and heatmaps HJZ.D , which provides spatial guid-
ance for the denoising U-Net [Rombach et al. 2022] backbone eg.
This process is referred as pg, (¢ | x) in Eq. 1. For the input image
x, we convert the cropped image x € RFXWXC from pixel space
to the latent space with frozen encoder & in the trained VQGAN
from the Controlnet framework to obtain the latent representation
RH "W’ x Gz

zp € . Then, we concatenate the heatmap H }D with the

input image zo to obtain Gy € RK+G2)xH XW 1 ot previous
diffusion models [Dhariwal and Nichol 2021; Rombach et al. 2022;
Zhang et al. 2023], the prompt guidance G; usually relies on text
embeddings derived from a frozen CLIP [Radford et al. 2021] model.
In contrast, we replace the text with 2D joint positions J2P as veri-
fied in [Zhu et al. 2024b]. To match the text token dimension Dj, a
two-layer MLP is used to enhance the dimensionality of the 2D joint
positions to 768 in the pre-trained diffusion model. This generates

a spatial guidance G; € RKXDj The process can be expressed as
follows:

Gy = Concat(z, H?D), (2)

Gt = MLP(J2p), ®3)

After that, gf and G are injected into €g through different channels,
thus we obtain the 2D guidance G.

4.2 Sketch Feature Extractor

Once the 2D guidance is obtained, our next objective is to extract
informative features from the sketches for 3D pose estimation. A
multi-scale features extractor is introduced based on the pre-trained
denoising U-Net. Our key idea is to fully extract the pre-trained
high-level knowledge from a pretrained diffusion model, named
informative features 7, then utilize its learned knowledge to predict
3D human poses from sketches. We employ the denoising U-Net
€p as the image backbone, performing a single inference to extract
features from image x. To provide effective guidance, we utilize the
conditional injection of human pose instead of the text condition,
which makes the connection between these conditions and the input

image such that the learned semantic information can be efficiently
extracted.

Specifically, pg, (7| €(x), G) is designed to extract hierarchical
feature maps ¥ from the input image x along with the 2D guid-
ance G. We observe that the pre-trained text-to-image diffusion
model serves as an excellent initialization for . which has al-
ready established a connection between the vision and language
domains.

It is also known that ControlNet leverages trainable copies of
the encoding layers within the denoising U-Net, serving as a ro-
bust backbone to learn various conditional controls, significantly
enhancing the fine-grained spatial controllability of the Latent Dif-
fusion Model (LDM) [Rombach et al. 2022]. In our implementation,
we utilize the ControlNet architecture to handle pose-conditioned
information from the 2D guidance G and integrate it into the im-
age features within the denoising U-Net eg. The output ¥ in the
decoding layers of eg is expressed as:

F =Fn(20;0) + Z(Fn(G; 0c); 02), 4

where F,(+; 0) is a trained neural network, Z(-; ) denotes zero con-
volution layers with both weights and bias initialized to zeros, 6,
represents the parameters within ControlNet, 8, is the parameters
of zero convolution layers. We feed the latent feature map and the
pose-conditioned inputs to the pre-trained eg network and extract
the multi-scale feature maps ¥; from the last layer of each out-
put block in different resolutions. Our experimental observations
indicate that the extracted informative features represent more in-
formation about the structures in abstract sketches, enhancing the
accuracy of the subsequent SMPL regression for sketch input.

In addition, we empirically find that the cross-attention maps
A; € RIGXHXW: from the decoding layers of the U-Net ey can
provide occlusion-aware cues that indicate invisible parts and help
to focus on the 2D skeleton condition information within the sketch.
Therefore, we concatenate the feature maps with the cross-attention
maps to generate the hierarchical feature maps F «— {[F}, Ai]},
which incorporate explicit and implicit diffusion priors and thereby
further enhance the performance of SMPL mesh regression.
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4.3  SMPL Mesh Regressor

In the last stage, an SMPL mesh regressor is proposed to predict
3D poses from the previously extracted features . Specifically,
P4, (y|F) refers to the prediction head that generates parameters
of the body model from the hierarchical feature maps 7. We first lift
the pose-guided 2D feature ¥ to the 3D feature ¥3p, then extend the
2D features by incorporating 3D joint feature sampling. To integrate
and align 2D and 3D features, we utilize a fusion transformer [Li
et al. 2023b] to regress SMPL parameters. Moreover, we employ a
pre-trained VQVAE [Van Den Oord et al. 2017], which is trained on
a large-scale motion dataset AMASS [Mahmood et al. 2019] with
extensive SMPL pose parameters to provide adequate human pose
priors and preserve the correspondence of the VQGAN framework,
which can obtain discrete representations of human poses. During
the regression, the decoder of the VQVAE is utilized to get the pose
parameters O, while the shape parameters  and camera parameters
c are directly predicted using linear layers.

4.4 Objective Function

Unlike human pose estimation from real-captured photos, recov-
ering human pose from artificial sketches in the literature is even
more difficult due to the distorted proportions, perspective, and
foreshortening. Specifically, sketches often depict characters with
unrealistic body shapes or exaggerated body proportions. There-
fore, standard optimization methods that depend solely on 2D joint
positions can result in inaccurate or unnatural outcomes. Through
observing the artwork of human character drawing, three key el-
ements are identified as crucial for addressing these issues: joint
angle, foreshortening, and self-contacts. Building on our proposed
human drawing dataset with 3D pose annotations, we introduce
new methods to address this.

Joint Angle. Character bones often appear longer than their ac-
tual length because of imprecision in drawings or the use of artistic
interpretation [Hogarth 1970; Johnston and Thomas 1981; Stanch-
field 2007] in human drawings. Due to inconsistent representations
of bone length, directly utilizing absolute joint positions becomes
impractical. And art literature has consistently highlighted the im-
portance of accurately describing joint angles. Therefore, we expect
the 3D bone projections to align with the bones depicted in 2D,
ensuring that the reconstructed 3D joint angles have corresponding
projections to the depicted 2D joint angles.

Our dataset provides precise annotations for the 2D joints x2P,
3D joints x3P, and exact SMPL pose parameters © of the characters
in each drawing. For each bone i connecting joints j; and jo, we

represent its 3D vector as b?D = x]3.2D - x}3.1D , and its orthographic
projection onto the screen as bl?D . The 2D joints predicted by our

algorithm are x2P
;2D _ 72D _ 22D
l_)i =X X
b?D . Guided by our principle of joint angle, the loss of parallelism

between the projected 2D bones can be expressed as:

p20\°
LparaHel = Z (”b;_D” : n) ) (5
i

i

, so the predicted vector corresponding to bone i is
and n represents the normal to the predicted bone
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This skeleton parallelism loss enables a more reasonable and natural
alignment of human joints in sketches than joint position loss.

Foreshortening. Empirically, artists typically do not rely on exact
mathematical measurements for orthographic or perspective pro-
jections when creating drawings [Hogarth 1970; Stanchfield 2007].
Thus, directly reconstructing 3D poses from predicted 2D poses
frequently results in highly inaccurate estimations of the angles
formed between the bones and the screen. For bone i, the angle
between the character in the drawing and the screen can be repre-
sented as the angle between the 3D vector of the skeleton and the
2D vector of its projection. The foreshortening loss for the skeleton
can thus be formulated as:

- 2

. (ub?Dn ||b?D||)

£ = — b " 2D |
\IB2P1 - 1B2P

(6)

where Ly is the skeleton-screen angle’s cosine.

Self-contacts. Self-contacts are prevalent in common human poses,
which are revealed by prior works [Hogarth 1970]. We hypothesize
that human observers often rely on perceived self-contacts to solve
the problem of depth ambiguity and link touching body parts to
similar depths. Previous works focus on optimizing regions based
on manually annotated self-contact areas. They enforce physical
contact between pairs of vertices by mapping each contact region
onto the vertices of the roughly aligned SMPL mesh. In contrast,
our dataset includes accurate SMPL pose parameters for the human
body in sketches, which provides correct relative depth and joint
positions of the character skeleton. In our method, we replace the
previous self-contact loss with the SMPL pose parameter loss, which
is calculated by L; loss between the predicted SMPL pose parameter
and the ground-truth SMPL pose parameter, thus supervising the
human mesh to recover the correct positions.

Instead of the previous position-based reprojection loss, our over-
all training objective in our method is defined as:

L=Xh Lparallel + A2 Ls + A3 Lpose + +/14-£shape’ (7)

where Lpose is the SMPL pose parameter loss, and Lghape is the
SMPL shape parameter loss, A1, A2, A3, A4 are set to 3, 3, 2, 1.

5 Experiments
5.1 Implementation Details

Datasets. We utilize two datasets for performance evaluation:

+ The artist-designed dataset is provided by Sketch2Pose [Brodt
and Bessmeltsev 2022], which contains six sketches with correspond-
ing 3D poses manually modeled by two artists that best align with
the artist’s intentions. The merit of this validation set lies in its
accurate representation of the ideal 3D pose intended by the artists,
whereas its limitation is the scant data volume, comprising merely
six very challenging poses.

+ The SKEP-120K validation set is created using the method out-
lined in Section 3. We invite experienced 3D modelers to manually
sieve through and eliminate inaccurate data to guarantee high qual-
ity. This validation set contains 600 validation tuples, with 100 tuples
for each of the six styles. Owing to its comprehensive coverage of
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Table 1. Quantitative comparison on the artist-designed dataset and the SKEP-120K validation set.(Unit: mm)

7

Method Expert1 Expert2 SKEP-120K
MPVE] MPJPE| PA-MPJPE] MPVE| MPJPE] PA-MPJPE| MPVE| MPJPE] PA-MPJPE|
PyMAF [Zhang et al. 2021] 312.7 299.4 187.5 301.5 291.2 187.0 143.1 117.4 101.3
EFT [Joo et al. 2021] 144.6 144.4 98.9 168.8 158.9 103.4 158.7 133.1 111.6
HybrlIK [Li et al. 2021] 348.7 345.5 199.6 365.2 352.0 208.5 211.0 177.7 144.0
CLIFF [Li et al. 2022] 186.4 181.5 142.2 217.3 201.3 144.5 137.3 113.3 98.0
HMR2.0 [Goel et al. 2023] 118.3 105.0 85.1 181.4 151.4 107.4 128.0 104.6 88.1
MotionBERT [Zhu et al. 2023] 170.6 165.2 120.1 189.1 172.2 127.6 124.4 99.4 83.6
DPMesh [Zhu et al. 2024b] 130.6 121.5 95.3 169.9 152.1 103.2 1234 98.0 81.1
DPMesh(Retrained) [Zhu et al. 2024b] 127.7 121.4 94.1 166.4 147.1 94.3 122.6 97.3 80.6
Sketch2Pose [Brodt and Bessmeltsev 2022]  103.8 101.4 78.1 145.5 135.9 86.8 152.1 125.9 100.3
Ours 103.1 95.7 77.4 146.5 131.5 84.3 106.7 87.7 72.6
Table 2. Quantitative comparison of ablation study. Table 3. Runtime of our method.

Method vs Expert 1 MPVE| MPJPE] PA-MPJPE| Method I(Sec.4.1) 1II(Sec.4.2) III (Sec.4.3) Total Time
w/0 Lparallel 169.8  165.7 102.5 PyMAF* 0.09s - 0.01s 0.10s
W/O L 117.7 110.2 84.4 EFT* ) 0.34s - 3.23s 3.57s
wfo Lpose 121.4 117.6 86.7 HyBrIi( 0.03s 0.06s 0.08s 0.17s

CLIFF 2.60s 1.21s 0.04s 3.85s
w/0 Lparaliel pose 13.7 107.3 85.6 HMR2.0* 0.52s - 0.03s 0.555
wioA; 104.9 971 796 MotionBERT*  0.04s - 0.155 0.19s
w/o J?P 174 1139 89.6 DPMesh* 0.05s 0.06s 0.03s 0.14s
w/o Data Curation 1048 99.0 82.7 Sketch2Pose 4.75s 32.98s 30.15s 67.57s
Ours (Full) 103.1 95.7 77.4 Ours 0.04s 0.05s 0.03s 0.12s

various sketch styles and extensive data volume, it is well-suited for
assessing the generalization capability.

Metrics. We adopt three standard metrics for 3D pose estimation:
Mean Per Joint Position Error (MPJPE) and Procrustes-Aligned Mean
Per Joint Position Error (PA-MPJPE) to evaluate the accuracy of the
predicted 3D joint positions, and Mean Per Vertex Error (MPVE) to
measure the accuracy of 3D mesh reconstruction in sketches. Quan-
titative metrics are only part of the evaluation for the prediction of
3D poses in sketches. We place greater emphasis on whether the
visualized results align more closely with the artist’s original intent.

Training Details. We train three models for data creation and
sketch-to-pose prediction: ControlNet to synthesize sketch data,
ViTPose for 2D keypoint detection, and our core sketch-to-pose
network. For ControlNet, condition maps and sketches are padded
to 512 x 512. Then, BLIP2 [Li et al. 2023a] is leveraged to generate
prompt labels for the sketches. ViTPose is fine-tuned separately
on our collected and synthesized sketch data and remains frozen
during core-model training, serving solely as a 2D joints extractor.
The core model training process consists of two stages. All training
and experiments run on 4 Nvidia A6000 GPUs. The supplementary
material provides more training details.

5.2 Quantitative Comparison

Quantitative comparisons on the artist-designed dataset and SKEP-
120K validation set are shown in Tab. 1. The artist-designed dataset
contains six real-world sketches with expert-annotated 3D poses, all
of which are challenging non-daily poses. On this dataset, our model

* means the model is not for sketches but for regular photos.

achieves the best overall performance of all metrics. Although gains
on charcoal sketches are modest relative to Sketch2Pose and we
even perform slightly worse on one expert-based metric, we reach
this accuracy in roughly 1/500 of Sketch2Pose’s runtime.

The SKEP-120K validation set contains sketches generated outside
of our training set. It includes six sketch styles, each containing 100
images, all following a real-world sketch distribution. Across all
styles, our method significantly outperforms prior approaches and
achieves the best overall results.

These results show that our method balances high accuracy with
strong efficiency. Its generalization surpasses both the generic pose
estimation algorithm and Sketch2Pose algorithm. To ensure a fair
evaluation, all methods use the same 2D inputs produced by our
trained ViTPose model. For generic pose estimation, we select the
current leading method DPMesh and retrain it with our data. The
performance gains verify the effectiveness of our dataset. Moreover,
with identical training data, our method still outperforms alterna-
tive approaches. Furthermore, its fast inference enables efficient
application to video, beyond static images.

5.3 Qualitative Comparison

We have visualized comparisons across diverse sketch styles in Fig. 6.
Notably, (a) - (b) demonstrate that our model can predict poses
consistent with real human body proportions even for cartoons
with exaggerated proportions. (c) - (f) highlight that our method
yields more accurate predictions for cartoons, children’s drawings,
stick figures, ink paintings, and oil paintings. Sketch2Pose struggles
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beyond charcoal sketches, and the generic image-to-pose baseline
DPMesh degrades markedly when dealing with various styles. By
contrast, only our method sustains high performance across multiple
sketch styles. We attribute this to our three-stage pose prediction
network design for sketch feature extraction and synthesized dataset
with perturbations.

Fig. 7 presents the predictions for challenging poses. Specifically,
(g) illustrates a scenario where one of the character’s arms is fully
occluded, yet our method infers a plausible pose. In (h), overlapping
character lines with a handheld object simplify structure, but the
pose is still correctly predicted. These results indicate that our ap-
proach better meets artists’ creative needs and predicts 3D human
poses more accurately. We also retarget predicted poses to custom
characters as shown in Fig. 1. Our method facilitates frame-by-frame
prediction due to its efficient inference speed, thereby significantly
improving the applicability and effectiveness of sketch-to-pose.

Fig. 8 presents the frame-by-frame results of our method applied
to continuous line animations, demonstrating the generalization
capability for pose estimation from videos. In addition, The supple-
mentary material provides a user study for subjective evaluation.

5.4 Ablation Study

We perform an ablation study on the artist-designed dataset to evalu-
ate the efficacy of our proposed loss terms. Specifically, we ablate the
loss terms Lparaltel, £t and Lpose from Eq. (4.4), and replace all pro-
posed loss terms with the joint-distance-based loss used in DPMesh,
retraining the model with all other settings the same. The evaluation
results reported in Tab. 2 reveal a performance degradation across
all ablation settings, indicating the indispensable contribution of
each ablated loss term to the overall model performance.

Next, we perform further ablations on the network design. Specif-
ically, we remove the 2D joint prediction J?P from the 2D guidance
extractor and exclude the cross-attention maps A; from the sketch
feature extractor. Tab. 2 shows a decline in model performance,
demonstrating the effectiveness of our network design. Moreover,
the quality of generated sketches is important for model perfor-
mance. We fine-tune ControlNet on real sketches to synthesize
high-quality training data, and subsequently apply manual cura-
tion to further enhance data quality. To validate the effect of sketch
quality, we retrain our model on the pre-curation set and find that
training on the curated set yields superior performance, showing
the importance of generated-sketch quality for overall effectiveness.

5.5 Runtime Analysis

The step-by-step runtimes of our method and Sketch2Pose are re-
ported in Table 3. Sketch2Pose involves a three-stage process that
differs from our design, including: (I) a 2D pose and initial 3D mesh
estimator; (II) an optimizer to correct errors in the estimated 3D
pose; and (III) a final refinement to better align the result with the
stylistic and structural constraints of the sketch. Since Sketch2Pose
leverages iterative optimization approaches to solve all three stages,
it incurs substantial computational cost. By contrast, our approach
achieves an over 500X speedup while delivering superior perfor-
mance compared to Sketch2Pose. This improvement is primarily
attributed to our efficient feed-forward neural network design. In
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addition to the comparison with Sketch2Pose, we also compare our
method with other approaches used for human pose estimation from
regular photos. The results demonstrate that our method achieves a
significant advantage in runtime, matching or even surpassing the
methods of pose estimation from regular photos.

Input sketch

fffff g = Ny ho
D A T
Predictions  L___! > v \f N1V
oY1 W\ “q§

Fig. 5. Failure cases. Our model may predict inaccurate terminal joints.

6 Conclusion

We present a novel approach to estimating human poses from
sketches. By adopting a learning-by-synthesizing strategy, we have
synthesized a large-scale, customized sketch-pose dataset tailored
for this task, significantly enhancing our model’s generalization
capabilities across various sketch styles. Furthermore, the proposed
feed-forward structured network has markedly improved the speed
of sketch-to-pose estimation.

Limitations. Terminal joints (e.g., those in the hands and feet)
in sketch-based human pose estimation remain particularly chal-
lenging to predict, owing to multiple factors. Firstly, sketches are
inherently abstract and often lack fine structural detail. For instance,
a single limb stroke may ambiguously depict either the contour of a
forearm or an extended hand as shown in Fig. 5 (i), providing only
limited discriminative cues. Secondly, terminal joints in sketches are
often occluded or have ambiguous depth cues. While our method
leverages a pretrained diffusion model to infer plausible positions
for occluded terminal joints, its predictions remain unnatural as
shown in Fig. 5 (ii). Thirdly, the hierarchical structure of the human
skeleton means that minor errors at proximal joints can propagate
along the kinematic chain, leading to disproportionately large errors
at distal joints as shown in Fig. 5 (iii). Collectively, these factors
result in lower estimation accuracy for terminal joints.

Our current work focuses on sketch-driven 3D human pose es-
timation. Subject-specific body-shape reconstruction is out of the
scope of our research. We have conducted further analysis of this
limitation in the supplementary materials, and addressing this issue
has become a priority for future research.
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Fig. 6. Qualitative Comparison of Multiple Sketch Styles. Our proposed model accurately predicts real human body proportions in cartoon images and
outperforms other methods in various sketch styles. Its high performance across multiple sketch styles is attributed to our three-stage pose prediction network
design and diverse dataset with perturbations. The red dashed box highlights the unreasonable 3D human pose estimation.
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Fig. 7. Qualitative Comparison of Challenging Poses. Our method successfully recovers plausible poses even when character parts are obscured or lines
overlap, as illustrated in specific scenarios. These results demonstrate that our approach better meets artists’ needs and predicts 3D human poses with higher
accuracy. The red dashed box highlights the unreasonable 3D human pose estimation. And our results can be seamlessly applied to a custom character using

standard tools.
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Fig. 8. Results on Sketch Video Input. The frame-by-frame prediction results show our method’s generalization capability in extracting human poses from

sketch videos.
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