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Figure 1. We present a novel approach for 3D human pose estimation from sketches. Benefiting from the large-scale SKEP-120K dataset,
we are able to learn a data-driven sketch-to-pose model that exhibits improved generalization ability and efficient inference. The pose result
can be automatically transferred to a custom-rigged and skinned 3D character.

Abstract

3D human pose estimation from sketches has broad appli-
cations in computer animation and film production. Un-
like traditional human pose estimation, this task presents
unique challenges due to the abstract and disproportion-
ate nature of sketches. Previous sketch-to-pose methods,
constrained by the lack of large-scale sketch-3D pose an-
notations, primarily relied on optimization with heuristic
rules—an approach that is both time-consuming and lim-
ited in generalizability. To address these challenges, we
propose a novel approach leveraging a ”learn from syn-
thesis” strategy. We first fine-tune an open-source image
diffusion model on multiple sketch styles conditioned on 2D
poses. This trained generator creates sketch images from
2D poses projected from 3D human poses. To mimic dis-
proportionate cartoon-like structures, we perturb the pose
structure by proportionally stretching specific body parts in
the conditioning 2D poses. This process enables the cre-
ation of synthetic dataset, SKEP-120K , consisting of 120k
accurate sketch-3D pose annotation pairs across various
sketch styles. Building on this synthetic dataset, we intro-

duce an end-to-end data-driven framework for estimating
human poses and shapes from diverse sketch styles. Our
framework combines existing 2D pose detectors and gen-
erative diffusion priors for sketch feature extraction with a
feed-forward neural network for efficient 2D pose estima-
tion. We implement several heuristic losses to ensure geo-
metric consistency between output 3D poses and detected
2D poses while maintaining faithful self-contacts. Through
our diverse synthetic dataset and dedicated model archi-
tecture, we achieve state-of-the-art accuracy while substan-
tially improving both inference speed and generalization ca-
pabilities. The code and data will be released upon publi-
cation.

1. Introduction

Human pose estimation holds significant importance and
finds widespread application across numerous scenarios.
Among the various sources used for pose estimation,
sketches emerge as a highly practical and versatile entity.
Sketches are data that can be more easily designed by artists
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and are widely used in animation and film production. More
broadly, the term ‘sketch’ encompasses a diverse range
of graphical styles, including charcoal sketches, cartoons,
stick figures, kids drawings, oil paintings, ink paintings and
so forth.

Estimating human poses from sketches presents a signif-
icant challenge. Generalized photo-based pose estimation
methods fall short in this task due to their exclusive training
on realistic data. By contrast, sketches often disregard hu-
man proportionality and geometric perspective, opting for
a more abstract representation of poses, thereby exacerbat-
ing the complexity of the sketch-to-pose conversion. To
tackle this, Brodt et al. introduced Sketch2Pose [6], which
initializes by predicting 2D joint positions from sketches
and subsequently aligns a 3D parametric human model to
their bones via an optimization framework. Nonetheless,
this method is sluggish and mostly tailored towards hand-
drawn sketch lines. Pursuing a swift and highly generalized
solution for the sketch-to-pose task remains an open prob-
lem.

To tackle this problem, we embraced a ”learn from syn-
thesis” strategy. Starting from a modest quantity of sketches
and corresponding 2D human pose datasets, a large-scale
sketch-3D pose dataset is synthesized by a fine-tuned im-
age generative model conditioned on human poses. Such
data synthesis is tailored for the sketch-to-pose task. Specif-
ically, we incorporated pose perturbations to create data rep-
resenting disproportionate human figures and misaligned
perspectives in sketches. Furthermore, we amassed a sub-
stantial collection of sketches encompassing diverse styles,
conducted detailed categorical analyses, and thereby en-
riched the stylistic variety of the sketches we generated.
Ultimately, we produced 120, 000 such high-quality sketch-
pose data pairs.

Based on such a dataset, we introduce an end-to-end
framework for estimating human mesh from various styled
sketches. The generative diffusion prior is leveraged to
extract human pose features in sketches and inject condi-
tions that fit the drawing features to guide the denoising
network. Unlike the iterative optimization strategy utilized
by Sketch2Pose, we implement a neural network featur-
ing a feed-forward architecture for almost 500 times faster
pose estimation. A feature-extracting strategy tailored for
sketches is introduced to boost the accuracy of 3D pose re-
gression. Owing to our extensive dataset encompassing a
wide range of styles and a meticulously designed loss func-
tion, our method achieves comparable pose estimation ac-
curacy to Sketch2Pose, while significantly surpassing it in
terms of speed and generalization capabilities.

The contributions of our work can be summarized as fol-
lows:
• Using a learning-by-synthesizing strategy, we propose

a novel approach to address the sketch-to-pose prob-

lem. This strategy involves synthesizing a large-scale,
customized sketch-3D pose dataset, which substantially
boosts the generalization capabilities of the sketch-to-
pose estimator across diverse sketch styles.

• By developing a feed-forward structured network, we
have significantly improved the speed of sketch-to-pose
estimation, marking the 500 times faster than the prior
SOTA sketch-to-pose estimator.

• Our meticulously designed network architecture and loss
function have greatly enhanced the robustness of the pre-
diction model, allowing it to accurately predict poses even
in the presence of human proportion distortions and per-
spective inaccuracies that commonly exist in sketches.
As a result, our method achieves state-of-the-art (SOTA)
pose prediction accuracy.

2. Related Works

Sketching is widely regarded as an easy and accessible way
to iteratively pose characters, catering to both profession-
als and non-artists. While notable progress has been made
in related fields such as sketch-based interfaces and image-
based pose estimations, the unique challenges of handling
abstract, disproportionate, and stylistically diverse sketches
are still underexplored. This section reviews the most rele-
vant works, categorized into sketch-based character posing
and human pose estimation from a single photograph.

2.1. Sketch-Based Character Posing

Sketch-based character posing provides an intuitive means
for users to manipulate 3D human poses, yet it introduces
several significant challenges. Depth ambiguity, anatomi-
cal distortions, missing details, and diverse sketching styles
make pose inference particularly difficult. Early works fo-
cused on stick figures [10, 14, 28, 32], silhouettes [52], and
clean vector drawings [3]. These approaches, though ef-
ficient in constrained scenarios, are hindered by their re-
liance on unambiguous, clean inputs. For instance, Ges-
ture3D [3] reconstructs poses from vector drawings but as-
sumes minimal noise, precise connectivity, and no extra
strokes—requirements that are rarely met by natural, user-
drawn sketches. This reliance on specific input types signif-
icantly limits the usability of such systems, as users cannot
freely use diverse sketching styles to specify desired poses.

Recent approaches like Sketch2Pose [6] use deep learn-
ing to predict bitmap representations and optimize 3D
model parameters for pose inference. However, due to
the scarcity of sketch-to-3D model pairs for training, the
method requires additional optimization to produce accept-
able results. This not only introduces a significant compu-
tational burden, but also raises concerns about the reliabil-
ity of the generated poses, which may lack naturalness or
anatomical correctness.
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An important application in this domain is the develop-
ment of interactive systems for engaging with sketches. To
achieve efficient inference, systems like MonsterMash [12]
and Motion Doodles [47] offer fast, intuitive sketch-based
interactions but are limited by strict input formats or de-
tailed annotations. Systems designed for articulated human
poses, like those by Unlu et al. [49] and Schmitz et al. [42],
impose further input constraints, requiring sketches to con-
sist of 3D primitives.

Previous methods have imposed a trade-off between ef-
ficiency and input diversity due to the lack of paired sketch-
3D pose datasets. In contrast, our approach addresses
this gap by proposing a large-scale dataset and building a
pose estimation network that directly predicts poses from
sketches. This enables efficient near-real-time performance
while maintaining generalizability, offering a simple, direct,
and scalable solution for sketch-to-pose estimation.

2.2. Human Pose from a Single Photograph
Estimating 3D human poses from a monocular image has
been extensively studied in computer vision due to its sig-
nificant applications in computer graphics, animation, and
human-computer interaction. Early methods relied on hand-
crafted features [1, 2, 39], using probabilistic models and
tree-based structures. However, they struggled with occlu-
sions, ambiguous poses, and appearance variations.

The introduction of deep learning shifted the field,
with DeepPose [48] being one of the first CNN-based ap-
proaches. This was followed by methods like Tekin et
al. [46], which integrated CNNs with structured predic-
tion to improve pose accuracy, and Martinez et al. [33],
which proposed a fully connected network for 2D-to-3D
lifting. Zhou et al. [57] added geometric constraints, while
Pavlakos et al. [36] used volumetric heatmaps for joint lo-
calization.

Despite progress, the need for large labeled datasets
limited generalization, especially for non-photorealistic in-
puts. The introduction of parametric models like SMPL [5]
and SMPL-X [37] advanced pose and shape estimation
with 3D human prior. Many methods [4, 13, 24, 27, 54]
focus on improving the accuracy of human mesh recov-
ery. Weakly supervised approaches like HMR [21] re-
gressed SMPL parameters using 2D keypoints and adver-
sarial losses. Kolotouros et al.’s SPIN [22] refined this
approach with optimization, while EFT [19] fine-tuned
SMPL predictions. And methods like 3DCrowedNet [9],
JOTR [26], DPMesh [59] are designed to recover the oc-
cluded body mesh.

Recent advancements include MotionBERT [58], a
transformer-based approach for long-range dependencies,
and D3DP [16, 43], which used diffusion models for robust
pose prediction. Self-supervised methods, such as Wang et
al. [51] and Novotny et al. [35], reduced dependence on la-

beled data using geometric consistency.
Our method bridges human pose estimation and charac-

ter drawing by leveraging visual priors in pre-trained diffu-
sion models, as seen in VPD [56]. Using our dataset, our
fine-tuned network extracts structural and spatial features
from the denoising U-Net for accurate human mesh recov-
ery. By processing the input image in a single inference
pass [59], our approach adapts diffusion priors to handle
abstract sketches, ensuring reliable pose estimation.

3. SKEP-120K Dataset
It is widely recognized that the quality and abundance of
the training data heavily influence the success of learning-
based techniques for human mesh recovery. Surprisingly,
we find that there is currently a notable absence of a large-
scale, high-quality dataset containing sketches and 3D hu-
man poses. Though several available datasets [6, 20, 30, 44]
offer a substantial number of sketches, they are limited to
providing only 2D pose annotations and feature only a sin-
gle sketch style. These previous sketch datasets are inade-
quate because of the lack of 3D poses and style diversity for
training a highly accurate and generalizable sketch-to-pose
model.

Therefore, we propose a Sketch and 3D Pose dataset
with 120k data pairs in various sketch styles, named as
SKEP-120K dataset. As shown in Fig. 3, the dataset en-
compasses six styles according to artificial human scenes:
cartoons, oil paintings, ink paintings, charcoal sketches,
stick figures, and kids drawings. Each style contains ap-
proximately 30,000 images. Our dataset provides human
bounding boxes, 16 human joints (both 2D and 3D, with
corresponding visible/invisible/included attributes), SMPL
pose parameters and text information. Due to the differ-
ent definitions of the skeleton for a human pose in differ-
ent datasets and considering the characteristics of gesture
expression in the sketch, we define a new 3D skeleton to
represent the human pose. Specifically, the body parts are
based on MSCOCO database [29], and two additional joints
regarding left and right toes are added to reflect fine-scale
leg poses.

The creation process of our dataset is shown in Fig. 2.
Firstly, we utilize VPoser [37] to generate random SMPL
models exhibiting diverse and plausible poses, where a vari-
ational autoencoder is designed to capture latent representa-
tions of human poses. Considering the foreshortening tech-
nique prevalent in sketch causes the difference between the
character structure in sketch and that in the real-captured
image, we add random biases to the generated bone length,
then project them onto the 2D image planes. This process
yields corresponding 3D and 2D joint annotations. Next,
we aggregate data from the Sketch2Pose [6], HumanArt
[20] and Amateur Drawing datasets [44]. The 2D keypoint
annotations from these datasets are uniformed into our de-
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Figure 2. SKEP-120K Dataset Creation. Our dataset creation process involves the following stages: (i) generating diverse SMPL poses
using VPoser; (ii) adding random biases to bone lengths and projecting them onto 2D planes; (iii) leveraging BLIP2 for text generation;
(iv) training a text-conditioned image generation model to generate sketches.

Figure 3. Data Description. SKEP-120K dataset comprises
six sketch styles: cartoons, oil paintings, ink paintings, charcoal
sketches, stick figures, and kids drawings. The provided 2D/3D
joints are shown on the left.

fined 16 joints and are classified by drawing styles. Then,
BLIP2 [25] is leveraged to generate appearance text infor-
mation on sketch images and motion text information on
SMPL rendering images, which we combine as the prompt
condition for training a text-conditioned image generation
model following ControlNet [55]. After training and man-
ual selection, we generate character images across various
styles with high accuracy and adherence to the 2D skele-
ton distribution. Given the diverse line-based nature of
sketches, we use the off-the-shelf outline detector [7] to ex-
tract line distributions within these images. A threshold is
applied to identify the smallest region encompassing most
lines, defining the character’s bounding box. We compare
the human bounding box with the bounding box generated
from the detector of HumanArt, leaving a more accurate re-
sult and manually filtering out the undetectable cases. We
also detect the occlusion of each joint based on the occlu-
sion relationship of SMPL mesh, which is recorded as the
label of each joint.

4. Method
Given the SKEP-120K dataset, our objective is to train
a prediction model for recovering 3D human poses from
sketches in varying styles. As shown in Fig. 4, our overall
network consists of three modules: (I) a 2D guidance ex-
tractor (Sec. 4.1); a sketch feature extractor (Sec. 4.2); and
an SMPL regressor (Sec. 4.3). From a probabilistic model
perspective, the above process can be formulated as:

pϕ(y |x) = pϕ3
(y |F)pϕ2

(F |ϵ(x),G)pϕ1
(G |ϵ(x)), (1)

where x denotes the input sketch; y is the 3D pose repre-
sented by SMPL parameters; F signifies informative fea-
ture maps extracted from sketches; G indicates the spatial
guidance extracted from 2D poses; ϵ is a pre-trained image
encoder network; pϕ1

, pϕ2
and pϕ3

correspond to the 2D
guidance extractor, sketch feature extractor, and SMPL re-
gressor, respectively. We will then explain each module as
well as the objective functions in the following sections.

4.1. 2D Guidance Extractor
Drawing inspiration from VPD [56], our core idea involves
extracting high-level pre-trained knowledge from a diffu-
sion model. A fundamental prerequisite for achieving this
is the extraction of 2D guidance.

The first step in extracting 2D guidance is to estimate
2D joints from input sketches. Leveraging our proposed
SKEP-120K dataset, we have fine-tuned two state-of-the-
art network models for human detection and 2D joint ex-
traction from sketches. Specifically, the input sketches are
firstly resized and padded to the resolution of 256 × 192
pixels to preserve the aspect ratio. Then, YOLOX [40]
is fine-tuned by Human-Art dataset for human’s bound-
ing box detection in sketches, and VITPose [53] model is
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Figure 4. Overall Pipeline. Given a sketch image as input, the network predicts 3D human poses represented by SMPL parameters. The
overall network consists of three modules: a 2D guidance extractor as detailed in Sec. 4.1; a sketch feature extractor as detailed in Sec. 4.2;
and an SMPL regressor as detailed in Sec. 4.3.

fine-tuned by SKEP-120K dataset for 2D joints prediction
from these bounded sketches. VITPose utilizes a straight-
forward, non-hierarchical vision transformer as the encoder
to capture human features in drawings, combined with a
lightweight decoder that predicts body joints in a top-down
approach. Finally, we obtain 2D joints J2D ∈ RK×2 along
with their corresponding confidence and transform them
into heatmaps H2D

j ∈ RK×H
′
×W

′

using 2D Gaussian ker-
nels [8].

After the 2D joints are obtained, pose features are ex-
tracted from the 2D joints J2D and heatmaps H2D

j , which
provides spatial guidance for the denoising U-Net [41]
backbone ϵθ. This process is referred as pϕ1(G | x) in
Eq. 1. For the input image x, we convert the cropped im-
age x ∈ RH×W×C from pixel space to the latent space
with frozen encoder E in the trained VQGAN from the
Controlnet framework to obtain the latent representation
z0 ∈ RH

′
×W

′
×Gz . Then, we concatenate the heatmap H2D

j

with the input image z0 to obtain Gf ∈ R(K+Gz)×H
′
×W

′

.
In most previous diffusion models [11, 41, 55], the prompt
guidance Gt usually rely on text embeddings derived from
a frozen CLIP [38] model. In contrast, we replaces the text
with 2D joint positions J2D as verified in [59]. To match
the text token dimension Dj , a two-layer MLP is used to
enhance the dimensionality of the 2D joint positions to 768
in the pre-trained diffusion model. This generates a spatial
guidance Gt ∈ RK×Dj . The process can be expressed as
follows:

Gf = Concat(z0,H
2D
j ), (2)

Gt = MLP(J2D), (3)

After that, Gf and Gt are injected into ϵθ through different
channels, thus we obtain the 2D guidance G.

4.2. Sketch Feature Extractor
Once the 2D guidance is obtained, our next objective is to
extract informative features from the sketches for 3D pose
estimation. A multi-scale features extractor is introduced
based on the pre-trained denoising U-Net. Our key idea is
to fully extract the pre-trained high-level knowledge from
a pretrained diffusion model, named informative features
F , then utilize its learned knowledge to predict 3D human
poses from sketches. We employ the denoising U-Net ϵθ
as the image backbone, performing a single inference to ex-
tract features from image x. To provide effective guidance,
we utilize the conditional injection of human pose instead
of the text condition, which makes the connection between
these conditions and the input image such that the learned
semantic information can be efficiently extracted.

Specifically, pϕ2(F | ϵ(x),G) is designed to extract hier-
archical feature maps F from the input image x along with
the 2D guidance G. We observe that the pre-trained text-to-
image diffusion model serves as an excellent initialization
for pϕ2

, which has already established a connection between
the vision and language domains.

It is also known that ControlNet leverages trainable
copies of the encoding layers within the denoising U-Net,
serving as a robust backbone to learn various conditional
controls, significantly enhancing the fine-grained spatial
controllability of the Latent Diffusion Model (LDM) [41].
In our implementation, we utilize the ControlNet architec-
ture to handle pose-conditioned information from the 2D
guidance G and integrate it into the image features within
the denoising U-Net ϵθ. The output F in the decoding lay-
ers of ϵθ is expressed as:

F = Fn(x; θ) + Z(Fn(G; θc); θz), (4)

where Fn(·; θ) is a trained neural network, Z(·; ·) denotes
zero convolution layers with both weights and bias initial-
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ized to zeros, θc represent the parameters within Control-
Net, θz is the parameters of zero convolution layers. We
feed the latent feature map and the pose-conditioned inputs
to the pre-trained ϵθ network and extract the multi-scale
feature maps Fi from the last layer of each output block
in different resolutions. Our experimental observations in-
dicate that the extracted informative features represent more
information about the structures in abstract sketches, en-
hancing the accuracy of the subsequent SMPL regression
for sketch input.

4.3. SMPL Mesh Regressor
In the last stage, an SMPL mesh regressor is proposed to
predict 3D poses from the previously extracted features F .
Specifically, pϕ3

(y | F) refers to the prediction head that
generates parameters of the body model from the hierarchi-
cal feature maps F . We first lift pose-guided 2D feature F
to 3D feature F3D, then extend 2D features by incorporat-
ing 3D joint feature sampling. To integrate and align 2D and
3D features, we utilize a fusion transformer [26] to regress
SMPL parameters. Moreover, we employ a pre-trained VQ-
VAE [50], which is trained on a large-scale motion dataset
AMASS [31] with extensive SMPL pose parameters to pro-
vide adequate human pose priors and preserve the corre-
spondence of the VQGAN framework, which can obtain
discrete representations of human poses. During the regres-
sion, the decoder of the VQVAE is utilized to get the pose
parameters Θ, while the shape parameters β and camera pa-
rameters c are directly predicted using linear layers.

4.4. Objective Function
Unlike human pose estimation from real-captured photos,
recovering human pose from artificial sketches in the liter-
ature is even more difficult due to the distorted proportions,
perspective, and foreshortening. Specifically, sketches of-
ten depict characters with unrealistic body shapes or exag-
gerated body proportions. Therefore, standard optimization
methods that depend solely on 2D joint positions can result
in inaccurate or unnatural outcomes. Through observing the
artwork of human character drawing, three key elements
are identified as crucial for addressing these issues: bone
tangents, foreshortening and self-contacts. Building on our
proposed human drawing dataset with 3D pose annotations,
we introduce new methods to address this.

Bone Tangent Character bones often appear longer than
their actual length because of imprecision in drawings or the
use of artistic interpretation [15, 18, 45] in human draw-
ings. Due to inconsistent representations of bone length,
directly utilizing absolute joint positions becomes impracti-
cal. And art literature has consistently highlighted the im-
portance of accurately describing joint angles. Therefore,
we expect the 3D bone projections to align with the bones

depicted in 2D, ensuring that the reconstructed 3D joint an-
gles have corresponding projections to the depicted 2D joint
angles.

Our dataset provides precise annotations for the 2D
joints x2D, 3D joints x3D, and exact SMPL pose param-
eters Θ of the characters in each drawing. For each bone i
connecting joints j1 and j2, we represent its 3D vector as
b3Di = x3D

j2
−x3D

j1
, and its orthographic projection onto the

screen as b2Di . The 2D joints predicted by our algorithm
is x̄2D, so the predicted vector corresponding to bone i is
b̄2Di = x̄2D

j2
− x̄2D

j1
, n represents the normal to the pre-

dicted bone b̄2Di . Guided by our principle of bone tangent,
the loss of parallelism between the projected 2D bones can
be expressed as:

Lparallel =
∑
i

(
b2Di
∥b2Di ∥

· n

)2

, (5)

This skeleton parallelism loss enables a more reasonable
and natural alignment of human joints in sketches than joint
position loss.

Foreshortening Artists typically do not rely on exact
mathematical measurements for orthographic or perspec-
tive projections When creating drawings [15, 45]. Thus,
directly reconstructing 3D poses from predicted 2D poses
frequently results in highly inaccurate estimations of the an-
gles formed between the bones and the screen. For bone
i, the angle between the character in the drawing and the
screen can be represented as the angle between the 3D vec-
tor of the skeleton and the 2D vector of its projection. The
foreshortening loss for the skeleton can thus be formulated
as:

Lf =
∑
i

(
∥b3Di ∥
∥b2Di ∥

−
∥b̄3Di ∥
∥b̄2Di ∥

)2

, (6)

where Lf is cosine of the angle between the skeleton and
the screen.

Perceived self-contacts Self-contacts, or contacts be-
tween different human body parts, are essential components
of numerous poses [15]. We hypothesize that human ob-
servers often rely on perceived self-contacts to solve the
problem of depth ambiguity and link touching body parts
to similar depths. Previous works focus on optimizing re-
gions based on manually annotated self-contact areas. They
enforce physical contact between pairs of vertices by map-
ping each contact region onto the vertices of the roughly
aligned SMPL mesh. In contrast, our dataset includes accu-
rate SMPL pose parameters for the human body in sketches,
which allows us to obtain the correct relative depth and
joint positions of the character skeleton. In our method,
we replace the previous self-contact loss with the SMPL
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Table 1. Quantitative comparison on the artist-designed dataset (Unit: mm)

Method
Expert1 Expert2

MPVE↓ MPJPE↓ PA-MPJPE↓ MPVE↓ MPJPE↓ PA-MPJPE↓
PyMAF [54] 312.7 299.4 187.5 301.5 291.2 187.0
EFT [19] 144.6 144.4 98.9 168.8 158.9 103.4
HybrIK [24] 348.7 345.5 199.6 365.2 352.0 208.5
CLIFF [27] 186.4 181.5 142.2 217.3 201.3 144.5
HMR2.0 [13] 118.3 105.0 85.1 181.4 151.4 107.4
MotionBERT [58] 170.6 165.2 120.1 189.1 172.2 127.6
DPMesh [59] 127.7 121.4 94.1 166.4 147.1 94.3
Sketch2Pose [6] 103.8 101.4 78.1 145.5 135.9 86.8

Ours 103.1 95.7 77.4 146.5 131.5 84.3

pose parameter loss, which is calculated by L1 loss between
the predicted SMPL pose parameter and the ground-truth
SMPL pose parameter, thus supervising the human mesh to
recover the correct positions.

Instead of the previous position-based reprojection loss,
our overall training objective in our method is defined as:

L = λ1Lparallel + λ2Lf + λ3Lpose ++λ4Lshape, (7)

where Lpose is the SMPL pose parameter loss, and Lshape

is the SMPL shape parameter loss, λ1, λ2, λ3, λ4 are set to
3, 3, 2, 1.

5. Experiments
5.1. Implementation Details
Datasets We utilize two datasets for performance evalua-
tion:

• The artist-designed dataset is provided by
Sketch2Pose [6], which contains six sketches with
corresponding 3D poses manually modeled by two artists
that best align with the artist’s intentions. The merit of this
validation set lies in its accurate representation of the ideal
3D pose intended by the artists, whereas its limitation is the
scant data volume, comprising merely six very challenging
poses.

• The SKEP-120K validation set is created using the
method outlined in Section 3. The difference is that we en-
list artists to manually sieve through and eliminate inaccu-
rate data to guarantee high quality. This validation set con-
tains 600 validation tuples, with 100 tuples for each of the
six styles. Owing to its comprehensive coverage of various
sketch styles and extensive data volume, it is well-suited for
assessing the generalization capability.

Metrics We adopt three common metrics for 3D pose
estimation: Mean Per Joint Position Error (MPJPE) and
Procrustes-Aligned Mean Per Joint Position Error (PA-
MPJPE) to evaluate the accuracy of the predicted 3D joint

positions, and Mean Per Vertex Error (MPVE) to measure
the accuracy of 3D mesh reconstruction in sketches.

Training Details We trained three models in the data cre-
ation and sketch-to-pose prediction: ControlNet for gener-
ating sketch data, ViTPose for 2D keypoint prediction from
sketches, and the core sketch-to-pose prediction model.
For ControlNet, the condition maps and sketch images are
padded to a resolution of 512 × 512. Then, BLIP2 [25]
is leveraged to generate prompt labels for the sketch im-
ages. The ControlNet is trained for 80,000 steps with a
batch size of 16. Next, we resize the collected sketch im-
ages to a resolution of 256× 192 and employ it to train the
ViTPose, trained for 210 epochs with a batch size of 32.
The core model training process consists of two stages: In
the first stage, we pre-train the model on the Human3.6M
[17], MuCo-3DHP [34], MSCOCO, and CrowdPose [23]
datasets for 30 epochs with a batch size of 32, using abso-
lute joint positions as supervision to help the model learn
the human pose information. In the second stage, we fine-
tune the model on the SKEP-120K dataset with our de-
signed objective function as Eq. (7) for 20 epochs with a
batch size of 32, enabling the model to learn various sketch
styles and can recover natural and accurate 3D pose of
sketch images. All training and experiments are conducted
on 4 NVIDIA A6000 GPUs.

5.2. Qualitative Comparison
The quantitative comparisons on the artist-designed dataset
and SKEP-120K validation set are shown in Tab. 1 and
Tab. ??, respectively.

The Artist-designed dataset only contains six samples
in charcoal sketch style, all of which are challenging non-
daily poses. On this dataset, our model achieves the best
overall performance of all metrics. Although our accuracy
improvement on charcoal sketches is modest compared to
Sketch2Pose, and we even perform slightly worse on one
metric related to an expert’s annotation, it is noteworthy that
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Figure 5. Qualitative Comparison of Multiple Sketch Styles. Our proposed model accurately predicts real human body proportions in
cartoon images and outperforms other methods in various sketch styles. Its high performance across multiple sketch styles is attributed to
our three-stage pose prediction network design and diverse dataset with perturbations. The red dashed box highlights the unreasonable 3D
human pose estimation.

Figure 6. Qualitative Comparison of Challenging Poses. Our method successfully recovers plausible poses even when character parts
are obscured or lines overlap, as illustrated in specific scenarios. These results demonstrate that our approach better meets artists’ needs
and predicts 3D human poses with higher accuracy. The red dashed box highlights the unreasonable 3D human pose estimation. And our
results can be seamlessly applied to a custom character using standard tools.

Table 2. Quantitative comparison of methods on the SKEP-120K
validation set.

Method MPVE↓ MPJPE↓ PA-MPJPE↓

PyMAF [54] 143.1 117.4 101.3
EFT [19] 158.7 133.1 111.6

HybrIK [24] 211.0 177.7 144.0
CLIFF [27] 137.3 113.3 98.0

HMR2.0 [13] 128.0 104.6 88.1
MotionBERT [58] 124.4 99.4 83.6

DPMesh [59] 122.6 97.3 80.6
Sketch2Pose [6] 165.6 146.4 126.6

Ours 106.7 87.7 72.6

Table 3. Quantitative comparison of ablation study.

Method vs Expert 1 MPVE↓ MPJPE↓ PA-MPJPE↓

Ours (w/o Lparallel) 169.8 165.7 102.5
Ours (w/o Lf ) 117.7 110.2 84.4

Ours (w/o Lpose) 121.4 117.6 86.7

Ours 103.1 95.7 77.4
Table 4. Runtime of our method.

Phase I (Sec. 4.1) II (Sec. 4.2) III (Sec. 4.3) Total Time

Time (ms) 44.3 49.1 31.8 125.2

our method achieves this level of accuracy in roughly 1/500
of the time taken by Sketch2Pose.

The SKEP-120K validation set contains sketches in a
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larger amount and in more diverse styles, including six dif-
ferent sketch styles. On this dataset, our model outperforms
Sketch2Pose and DPMesh by a large margin in all six sketch
styles.

The above quantitative experiments demonstrate that
our method balances high accuracy with remarkable effi-
ciency. The generalization performance of our model far
exceeds not only the generic pose estimation algorithm (like
DPMesh, MotionBERT), but also the Sketch2Pose algo-
rithm for sketches. Furthermore, its rapid inference speed
allows sketch-based 3D pose estimation to extend beyond
static images and effectively process video data.

5.3. Qualitative Comparison

We visualized the comparison results on the SKEP-120K
dataset, artist-designed dataset, and Internet images and
videos. Fig. 5 presents the prediction results for sketches of
different styles. Notably, (a) - (b) demonstrate that our pro-
posed model can accurately predict poses that adhere to real
human body proportions, even in cartoon images where the
body proportions deviate significantly from reality. (c) - (f)
highlight that our method yields more accurate predictions
for cartoons, children’s drawings, stick figures, ink paint-
ings, and oil paintings. We can see that Sketch2Pose en-
counters difficulties with inputs beyond charcoal sketches,
while DPMesh, a general-purpose image-to-human pose
prediction network, experiences a significant drop in pre-
diction accuracy when dealing with various sketch styles.
By contrast, our method is the only model capable of main-
taining high performance across multiple sketch styles. We
attribute our model’s effective feature extraction and en-
hanced generalization to our three-stage pose prediction
network design for sketch feature extraction and our syn-
thesized dataset with perturbations.

Fig. 6 shows the prediction results for some challenging
human poses. Specifically, (g) illustrates a scenario where
one of the character’s arms is completely obscured, yet our
method successfully recovers the most plausible pose. In
(h), the lines of the characters and a handheld object over-
lap, presenting a simplified structural line. Despite this, our
method accurately predicts the correct pose. These visual-
ized results indicate that our approach better meets artists’
creative needs and predicts 3D human poses more accu-
rately. We then present the results of retargeted pose to
custom characters. As shown in Fig. 1, our method facil-
itates frame-by-frame prediction due to its efficient reason-
ing speed, thereby significantly improving the applicability
and effectiveness of sketch-to-pose.

Fig. ?? presents the frame-by-frame prediction results
of our method applied to continuous line animations. This
demonstrates the method’s generalization capability to ex-
tract human poses from sketch videos.

5.4. Ablation Study
We conduct an ablation study on the artist-designed dataset
to verify the effectiveness of our proposed loss terms.
Specifically, we ablate the loss terms Lparallel, Lf , and
Lpose from Eq. (4.4) and retrain the model with all other
settings the same. The performance of these ablated models
is reported in Tab. 3. We can see that the ablation clearly
degrades the performance, and the full objective function
turns out to be the most effective design.

5.5. Runtime Analysis
We present the step-by-step runtime of our method in Ta-
ble 4. Our algorithm outperforms Sketch2Pose by approx-
imately 500 times in speed while achieving superior per-
formance, which is attributed to our efficient feed-forward
neural network design.

6. Conclusion
We present a novel approach to the challenging problem
of human pose estimation from sketches. By adopting
a learning-by-synthesizing strategy, we have synthesized
a large-scale, customized sketch-pose dataset tailored for
this task, significantly enhancing our model’s generaliza-
tion capabilities across various sketch styles. Furthermore,
the proposed feed-forward structured network has markedly
improved the speed of sketch-to-pose estimation.

Limitations. Our method does have some limitations.
Firstly, the predicted terminal joints in the pose, like the
wrist, ankle, and head, are relatively less accurate. We
attribute this primarily to the fact that most sketches con-
vey fewer details of these subtle poses, making the predic-
tion even more difficult. Additionally, excessively complex
backgrounds can disrupt the method’s predictions, high-
lighting the need to enhance its resilience to environmental
interference.
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